1,593 research outputs found

    A Relic Neutrino Detector

    Full text link
    Probably the most promising way of detecting cosmic neutrinos is measuring the mechanical force exerted by elastic scattering of cosmic neutrinos from macroscopic targets. The expected acceleration is 1023cm/s2\sim 10^{-23} cm/s^2 for Dirac neutrinos of mass 10eV\sim 10 eV and local density 107/cm3\sim 10^7/ cm^3. A novel torsion balance design is presented. which addresses the sensitivity-limiting factors of existing balances, such as seismic and thermal noise, and angular readout resolution and stability.Comment: 4 pages, 2 figures. In proceedings of the COSMO-98 Int'l Workshop on Particle Physics and the Early Universe, edited by D. Caldwell (AIP Press, New York, 1999

    A two-stage magnetic refrigerator for astronomical applications with reservoir temperatures above 4 K

    Get PDF
    We propose a novel adiabatic demagnetization refrigerator (ADR) to produce temperatures as low as 100 mK starting from a high temperature reservoir between 4 and 8 K. The high temperature reservoir for the ADR can be provided by a mechanical cooler or an unpumped liquid helium bath. This refrigerator can be used to cool bolometric infrared detectors for low background astronomy from mountain tops, balloons or satellites as well as to cool cryogenic x-ray detectors. The two-stage ADR consists of a single magnet with a paramagnetic chromic-cesium-alum (CCA) salt pill to produce the low temperature and paramagnetic gadolinium-gallium-garnet (GGG) as the first stage to intercept heat from the high temperature reservoir. Thermal contact between the paramagnets and the reservoir during magnetization is made with a mechanical heat switch. The ADR is suspended with Kevlar chords under tension for high mechanical stiffness and low parasitic heat leak. In a single cycle, the ADR maintains a temperature of 100 mK for 10 to 100 hours. This time depends strongly on the magnetic field and reservoir temperature but not on the volume of the paramagnetic material as long as the heat leak is dominated by the suspension

    Axions from wall decay

    Get PDF
    We discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is 7ma \simeq 7 m_a for va/ma500v_a/m_a\simeq 500. is found to increase approximately linearly with ln(va/ma)\ln(v_a/m_a). Extrapolation of this behaviour yields 60ma \simeq 60 m_a in axion models of interest.Comment: 6 pages, 7 figures, to be published in the Proc. of the 5th IFT Axion workshop Gainesville FL, Mar 13-15 199

    Probing Axions with Radiation from Magnetic Stars

    Get PDF
    Recent experiments suggest that polarized photons may couple significantly to pseudoscalar particles such as axions. We study the possible observational signatures of axion-photon coupling for radiation from magnetic stars, with particular focus on neutron stars. We present general methods for calculating the axion-photon conversion probability during propagation through a varying magnetized vacuum as well as across an inhomogeneous atmosphere. Partial axion-photon conversion may take place in the vacuum region outside the neutron star. Strong axion-photon mixing occurs due to a resonance in the atmosphere, and depending on the axion coupling strength and other parameters, significant axion-photon conversion can take place at the resonance. Such conversions may produce observable effects on the radiation spectra and polarization signals from the star. We also apply our results to axion-photon propagation in the Sun and in magnetic white dwarfs. We find that there is no appreciable conversion of solar axions to photons during the propagation.Comment: 12 pages, 11 figures. Minor changes. PRD accepte

    A broadband THz receiver for low background space applications

    Get PDF
    We have developed a sensitive bolometric receiver for low background space applications. In a 10 percent bandwidth at 1 THz, this receiver is approximately 100 times more sensitive than a quantum limited heterodyne receiver with a 1 GHz IF bandwidth. This receiver is designed to be used for the long wavelength band (200-700 microns) in the MIPS instrument on NASA's SIRTF satellite. The bolometers are cooled to 100 mK by an adiabatic demagnetization refrigerator. Roughly 60 g of cesium chrome alum salt is partially demagnetized to 100 mK, followed by a slow regulated downramp to compensate for the heat leak. The hold time of the ADR system is about 18 hours with a temperature stability of delta T(sub rms) approx. equals 10 micro-K. The composite bolometers have electrical responsivities of 10(exp 9)V/W and electrical NEP's of about 3x10(exp -17) W/square root of Hz. The bolometer signals are read out by JFET preamplifiers located on the helium plate and operated at 120 K. We have addressed a number of space qualification issues, such as the development of an analog magnet controller, construction of a cryogenic shake-table for bolometers and selection of the paramagnetic salt CCA which can survive a bakeout at 50 C. The receiver is scheduled to be flown in the spring of 1992 on a balloon telescope. This flight has a dual purpose. One is to provide realistic test of the capabilities of the new receiver. The other is to search for anisotropies in the cosmic microwave background on scales of a few degrees

    The Rydberg-Atom-Cavity Axion Search

    Get PDF
    We report on the present progress in development of the dark matter axion search experiment with Rydberg-atom-cavity detectors in Kyoto, CARRACK I and CARRACK II. The axion search has been performed with CARRACK I in the 8 % mass range around 10μeV 10 \mu {\rm eV} , and CARRACK II is now ready for the search in the wide range 2μeV50μeV 2 \mu {\rm eV} - 50 \mu {\rm eV} . We have also developed quantum theoretical calculations on the axion-photon-atom system in the resonant cavity in order to estimate precisely the detection sensitivity for the axion signal. Some essential features on the axion-photon-atom interaction are clarified, which provide the optimum experimental setup for the axion search.Comment: 8 pages, 2 figures, Invited talk presented at the Dark2000, Heidelberg, Germany,10-15 July, 200

    Can one predict DNA Transcription Start Sites by studying bubbles?

    Full text link
    It has been speculated that bubble formation of several base-pairs due to thermal fluctuations is indicatory for biological active sites. Recent evidence, based on experiments and molecular dynamics (MD) simulations using the Peyrard-Bishop-Dauxois model, seems to point in this direction. However, sufficiently large bubbles appear only seldom which makes an accurate calculation difficult even for minimal models. In this letter, we introduce a new method that is orders of magnitude faster than MD. Using this method we show that the present evidence is unsubstantiated.Comment: 4 pages, 3 figures, accepted for publication in physical review letter

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure
    corecore